
Modul:Check for unknown parameters

Seite von 1 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

Inhaltsverzeichnis

1. Modul:Check for unknown parameters .. 2
2. Modul:Parameters ... 7

Modul:Check for unknown parameters

Seite von 2 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

Modul:Check for unknown parameters

Vorlage:Lua

This module may be appended to a template to check for uses of unknown parameters.

Inhaltsverzeichnis

 1 Usage .. 2
 1.1 Basic usage ... 2
 1.2 Lua patterns .. 3

 2 Example .. 3
 3 See also ... 3

Usage

Basic usage

{{#invoke:check for unknown parameters|check
|unknown=[[Category:Some tracking category]]
|arg1|arg2|arg3|argN}}

or to sort the entries in the tracking category by parameter with a preview error message

{{#invoke:check for unknown parameters|check
|unknown=[[Category:Some tracking category|_VALUE_]]
|preview=unknown parameter "_VALUE_"
|arg1|arg2|...|argN}}

or for an explicit red error message

{{#invoke:check for unknown parameters|check
|unknown=Sorry, I don't recognize _VALUE_
|arg1|arg2|...|argN}}

Here, , , ..., , are the known parameters. Unnamed (positional) parameters can be arg1 arg2 argN
added too: . Any parameter which is used, but not on this list, will |1|2|argname1|argname2|...
cause the module to return whatever is passed with the parameter. The unknown _VALUE_
keyword, if used, will be changed to the name of the parameter. This is useful for either sorting
the entries in a tracking category, or for provide more explicit information.

By default, the module makes no distinction between a defined-but-blank parameter and a non-
blank parameter. That is, both unlisted and are reported. To only track Vorlage:Para Vorlage:Para
non-blank parameters use .Vorlage:Para

https://cuv.copiki.de/index.php?title=Vorlage:Lua&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1

Modul:Check for unknown parameters

Seite von 3 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

By default, the module ignores blank positional parameters. That is, an unlisted is Vorlage:Para
ignored. To blank positional parameters in the tracking use .include Vorlage:Para

Lua patterns

This module supports (similar to), which are useful when there Lua patterns regular expressions
are many known parameters which use a systematic pattern. For example, template:infobox3cols
uses

| regexp1 = header[%d][%d]*
| regexp2 = label[%d][%d]*
| regexp3 = data[%d][%d]*[abc]?
| regexp4 = class[%d][%d]*[abc]?
| regexp5 = rowclass[%d][%d]*
| regexp6 = rowstyle[%d][%d]*
| regexp7 = rowcellstyle[%d][%d]*

to match all parameters of the form , , , , , headerNUM labelNUM dataNUM dataNUMa dataNUMb
, ..., , where NUM is a string of digits.dataNUMc rowcellstyleNUM

Example

{{Infobox
| above = {{{name|}}}

| label1 = Height
| data1 = {{{height|}}}

| label2 = Weight
| data2 = {{{weight|}}}

| label3 = Website
| data3 = {{{website|}}}
}}<!--
 end infobox, start tracking
-->{{#invoke:Check for unknown parameters|check
| unknown = {{main other|[[Category:Some tracking category|_VALUE_]]}}
| preview = unknown parameter "_VALUE_"
| name
| height | weight
| website
}}

See also

Vorlage:Clc (category page can have header)Vorlage:Tl
Module:Check for deprecated parameters – similar module that checks for deprecated
parameters
Module:Check for clobbered parameters – module that checks for conflicting parameters
Module:TemplatePar – similar function (originally from dewiki)

Template:Parameters and – generates a list of parameter names for a Module:Parameters

https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://www.mediawiki.org/wiki/Extension:Scribunto/Lua_reference_manual#Patterns
https://cuv.copiki.de/index.php?title=Regular_expression&action=view
https://cuv.copiki.de/index.php?title=Vorlage:Infobox3cols&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Clc&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Tl&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Modul:Check_for_deprecated_parameters&action=view
https://cuv.copiki.de/index.php?title=Modul:Check_for_clobbered_parameters&action=view
https://cuv.copiki.de/index.php?title=Modul:TemplatePar&action=view
https://cuv.copiki.de/index.php?title=Vorlage:Parameters&action=edit&redlink=1

Modul:Check for unknown parameters

Seite von 4 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

Template:Parameters and – generates a list of parameter names for a Module:Parameters
given template
Project:TemplateData based template parameter validation
Module:Parameter validation checks a lot more
User:Bamyers99/TemplateParametersTool - A tool for checking usage of template parameters

-- This module may be used to compare the arguments passed to the parent
-- with a list of arguments, returning a specified result if an argument is
-- not on the list
local p = {}

local function trim(s)
 return s:match('^%s*(.-)%s*$')
end

local function isnotempty(s)
 return s and s:match('%S')
end

local function clean(text)
 -- Return text cleaned for display and truncated if too long.
 -- Strip markers are replaced with dummy text representing the original wikitext.
 local pos, truncated
 local function truncate(text)
 if truncated then
 return ''
 end
 if mw.ustring.len(text) > 25 then
 truncated = true
 text = mw.ustring.sub(text, 1, 25) .. '...'
 end
 return mw.text.nowiki(text)
 end
 local parts = {}
 for before, tag, remainder in text:gmatch('([^\127]*)\127[^\127]*%-(%l+)%-[^\127]*\127()') do
 pos = remainder
 table.insert(parts, truncate(before) .. '<' .. tag .. '>...</' .. tag .. '>')
 end
 table.insert(parts, truncate(text:sub(pos or 1)))
 return table.concat(parts)
end

function p._check(args, pargs)
 if type(args) ~= "table" or type(pargs) ~= "table" then
 -- TODO: error handling
 return
 end

 -- create the list of known args, regular expressions, and the return string
 local knownargs = {}
 local regexps = {}
 for k, v in pairs(args) do
 if type(k) == 'number' then
 v = trim(v)
 knownargs[v] = 1
 elseif k:find('^regexp[1-9][0-9]*$') then
 table.insert(regexps, '^' .. v .. '$')
 end
 end

 -- loop over the parent args, and make sure they are on the list

https://cuv.copiki.de/index.php?title=Vorlage:Parameters&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Projekt:TemplateData&action=view
https://cuv.copiki.de/index.php?title=Modul:Parameter_validation&action=view
https://cuv.copiki.de/index.php?title=Benutzer:Bamyers99/TemplateParametersTool&action=view

Modul:Check for unknown parameters

Seite von 5 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

 -- loop over the parent args, and make sure they are on the list
 local ignoreblank = isnotempty(args['ignoreblank'])
 local showblankpos = isnotempty(args['showblankpositional'])
 local values = {}
 for k, v in pairs(pargs) do
 if type(k) == 'string' and knownargs[k] == nil then
 local knownflag = false
 for _, regexp in ipairs(regexps) do
 if mw.ustring.match(k, regexp) then
 knownflag = true
 break
 end
 end
 if not knownflag and (not ignoreblank or isnotempty(v)) then
 table.insert(values, clean(k))
 end
 elseif type(k) == 'number' and knownargs[tostring(k)] == nil then
 local knownflag = false
 for _, regexp in ipairs(regexps) do
 if mw.ustring.match(tostring(k), regexp) then
 knownflag = true
 break
 end
 end
 if not knownflag and (showblankpos or isnotempty(v)) then
 table.insert(values, k .. ' = ' .. clean(v))
 end
 end
 end

 -- add results to the output tables
 local res = {}
 if #values > 0 then
 local unknown_text = args['unknown'] or 'Found _VALUE_, '

 if mw.getCurrentFrame():preprocess("{{REVISIONID}}") == "" then
 local preview_text = args['preview']
 if isnotempty(preview_text) then
 preview_text = require('Module:If preview')._warning({preview_text})
 elseif preview == nil then
 preview_text = unknown_text
 end
 unknown_text = preview_text
 end
 for _, v in pairs(values) do
 -- Fix odd bug for | = which gets stripped to the empty string and
 -- breaks category links
 if v == '' then v = ' ' end

 -- avoid error with v = 'example%2' ("invalid capture index")
 local r = unknown_text:gsub('_VALUE_', {_VALUE_ = v})
 table.insert(res, r)
 end
 end

 return table.concat(res)
end

function p.check(frame)
 local args = frame.args
 local pargs = frame:getParent().args
 return p._check(args, pargs)
end

return p

Modul:Check for unknown parameters

Seite von 6 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

return p

Modul:Check for unknown parameters

Seite von 7 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

Modul:Parameters

Vorlage:Lua

Implements Vorlage:Tl

-- This module implements [[Template:Parameters]].
-- [SublimeLinter luacheck-globals:mw]

local DEFINITIONS = {
 alt = {
 code = '<!-- text alternative for image; see WP:ALT -->',
 dlist = 'text alternative for image; see [[WP:ALT]]'},
 coordinates = {
 code = '<!-- use {{Coord}} -->',
 dlist = 'using {{tl|Coord}}'},
 coords = {
 code = '<!-- use {{Coord}} -->',
 dlist = 'using {{tl|Coord}}'},
 native_name = {
 code = '<!-- name in local language; if more than one, separate ' ..
 'using {{Plainlist}} use {{lang}}, and omit native_name_lang -->',
 dlist = 'name in local language; if more than one, separate ' ..
 'using {{tl|Plainlist}}, use {{tl|lang}}, and omit {{para|native_name_lang}}'},
 native_name_lang = {
 code = '<!-- language two- or three-letter ISO code -->',
 dlist = 'language two- or three-letter ISO code'},
 start_date = {
 code = '<!-- {{Start date|YYYY|MM|DD|df=y}} -->',
 dlist = 'use {{tlx|Start date|YYYY|MM|DD|df=y}}'},
 end_date = {
 code = '<!-- {{End date|YYYY|MM|DD|df=y}} -->',
 dlist = 'use {{tlx|Start date|YYYY|MM|DD|df=y}}'},
 url = {
 code = '<!-- use {{URL|example.com}} -->',
 dlist = 'using {{tl|URL}}'},
 website = {
 code = '<!-- use {{URL|example.com}} -->',
 dlist = 'using {{tls|URL|example.com}}'},}

local p = {}
local removeDuplicates = require('Module:TableTools').removeDuplicates
local yesno = require('Module:Yesno')

local function makeInvokeFunction(funcName)
 return function(frame)
 local getArgs = require('Module:Arguments').getArgs
 return p[funcName](getArgs(frame, {removeBlanks = false}))
 end
end

local function extractParams(page)
 local source = mw.title.new(page, 'Template'):getContent()

 local parameters = {}
 for parameter in string.gmatch(source, '{{{(.-)%f[}|<>]') do
 table.insert(parameters, parameter)
 end
 return removeDuplicates(parameters)
end

https://cuv.copiki.de/index.php?title=Vorlage:Lua&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Tl&action=edit&redlink=1

Modul:Check for unknown parameters

Seite von 8 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

end

local function map(tbl, transform)
 local returnTable = {}
 for k, v in pairs(tbl) do
 returnTable[k] = transform(v)
 end
 return returnTable
end

local function strMap(tbl, transform)
 local returnTable = map(tbl, transform)
 return table.concat(returnTable)
end

function p._check(args)
 local title = args.base or mw.title.getCurrentTitle().fullText
 return string.format(
 '{{#invoke:Check for unknown parameters|check|unknown=' ..
 '[[Category:Pages using %s with unknown parameters]]|%s}}', title,
 table.concat(extractParams(args.base), '|'))
end

function p._code(args)
 local definitions = yesno(args.definitions)
 local pad = yesno(args.pad)

 local parameters = extractParams(args.base)
 -- Space-pad the parameters to align the equal signs vertically
 if pad then
 local lengthPerPara = map(parameters, function (parameter)
 return string.len(parameter) end)
 -- Lua doesn't support printf's <*> to specify the width, apparently
 local fs = string.format('%%-%ss', math.max(unpack(lengthPerPara)))
 for i, parameter in pairs(parameters) do
 parameters[i] = string.format(fs, parameter)
 end
 end

 local title = args.base or mw.title.getCurrentTitle().baseText
 return string.format([[<nowiki>{{%s
%s}}</nowiki>]], title, strMap(parameters,
 function(s)
 if definitions then
 return string.format('| %s = %s\n', s,
 DEFINITIONS[s] and DEFINITIONS[s].code or '')
 else
 return string.format('| %s = \n', s)
 end
 end))
end

function p._flatcode(args)
 local parameters = extractParams(args.base)
 local title = args.base or mw.title.getCurrentTitle().baseText
 return string.format(' {{tlp|%s%s}}', title, strMap(parameters,
 function(s)
 return string.format(' |%s{{=}}<var>%s</var>', s, s)
 end)
)
end

function p._compare(args)
 local Set = require('Module:Set')

Modul:Check for unknown parameters

Seite von 9 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

 local function normaliseParams(parameters)
 local paramsNorm = {}
 -- Prepare a key lookup metatable, which will hold the original
 -- parameter names for each normalised parameter, e.g.
 -- [test] = {TEST, Test}. paramIndex functions like a Python
 -- defaultdict, where the default is a table.
 local paramIndex = setmetatable({}, {__index = function(t, k)
 if not rawget(t, k) then
 rawset(t, k, {})
 end
 return rawget(t, k)
 end})
 for _, parameter in pairs(parameters) do
 table.insert(paramsNorm,
 string.lower(string.gsub(parameter, '%A', '')))
 table.insert(paramIndex[
 string.lower(string.gsub(parameter, '%A', ''))], parameter)
 end

 paramsNorm = removeDuplicates(paramsNorm)
 -- Overload key lookup in paramsNorm. While [[Module:Set]] will
 -- operate on the table (which is to say, the normalised parameters
 -- array), key access will be by way of the paramIndex metatable.
 setmetatable(paramsNorm, {__index = paramIndex})
 return paramsNorm
 end

 local baseParams = extractParams(args.base)
 local otherParams = extractParams(args.other)
 local baseNormParams = normaliseParams(Set.valueComplement(
 otherParams, baseParams))
 local otherNormParams = normaliseParams(otherParams)

 return string.format([[Identical:
%s
Similar:
%s
Disparate:
%s]],
 strMap(Set.valueIntersection(baseParams, otherParams),
 function(v) return string.format('* %s\n', v) end),
 strMap(Set.valueIntersection(baseNormParams, otherNormParams),
 function(v) return string.format('* %s < %s [%s]\n',
 table.concat(baseNormParams[v], '; '),
 table.concat(otherNormParams[v], '; '),
 v)
 end),
 strMap(Set.valueComplement(otherNormParams, baseNormParams),
 function(v) return strMap(baseNormParams[v],
 function(s) return string.format('* %s\n', s) end)
 end))
end

function p._demo(args)
 local title = args.base and ('|_template=' .. args.base) or ''
 return string.format('{{Parameter names example%s|%s}}', title,
 table.concat(extractParams(args.base), '|'))
end

function p._dlist(args)
 local definitions = yesno(args.definitions, true)
 local defFormat = '; %s: %s\n'
 local nonDefFormat = '; %s: \n'

 if args._para then

Modul:Check for unknown parameters

Seite von 10 10
Ausgabe: 04.02.2026
Letzte Änderung: 24.08.2022

 if args._para then
 defFormat = '; {{para|%s}}: %s\n'
 nonDefFormat = '; {{para|%s}}: \n'
 end
 return strMap(extractParams(args.base),
 function(s)
 if definitions then
 return string.format(defFormat, s,
 DEFINITIONS[s] and DEFINITIONS[s].dlist or '')
 else
 return string.format(nonDefFormat, s)
 end
 end)
end

function p._dlistpara(args)
 args._para = true
 return p._dlist(args)
end

function p._list(args)
 return strMap(extractParams(args.base),
 function(s) return string.format('* %s\n', s) end)
end

p.check = makeInvokeFunction('_check')
p.code = makeInvokeFunction('_code')
p.flatcode = makeInvokeFunction('_flatcode')
p.compare = makeInvokeFunction('_compare')
p.demo = makeInvokeFunction('_demo')
p.dlist = makeInvokeFunction('_dlist')
p.dlistpara = makeInvokeFunction('_dlistpara')
p.list = makeInvokeFunction('_list')

return p

	Modul:Check for unknown parameters
	Usage
	Basic usage
	Lua patterns

	Example
	See also

	Modul:Parameters

