@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

Inhaltsverzeichnis

1. Modul:Check for unknNOWN Par@ameELars ...
2. MOAUL PAraM LIS ..o e

Ausgabe: 04.02.2026

o 2 of o .
: S Seite 1 von 10
Letzte Anderung: 24.08.2022 ~copiki

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

Modul:Check for unknown parameters

Vorlage:Lua

This module may be appended to a template to check for uses of unknown parameters.

Inhaltsverzeichnis
I U ST Yo TP 2
N = 1= Tt U {3V = 2
i U= I o 1= Y =] o o [T PP PR 3
B == 12/ | [P 3
eI Y =TS IR= 1Yo T PP PTRPPTRN 3

Usage

Basic usage

{{#invoke:check for unknown parameters|check
|unknown=[[Category:Some tracking category]]
|argl|arg2|arg3|argN}}

or to sort the entries in the tracking category by parameter with a preview error message

{{#invoke:check for unknown parameters|check
|unknown=[[Category:Some tracking category| VALUE 1]
|preview=unknown parameter " VALUE "
|argl|arg2|...|argN}}

or for an explicit red error message

{{#invoke:check for unknown parameters]|check
|unknown=Sorry, I don't recognize VALUE
|argl|arg2]|...|argN}}

Here, argl, arg2, ..., argN, are the known parameters. Unnamed (positional) parameters can be
added too: |1|2|argnamel|argname2|. ... Any parameter which is used, but not on this list, will
cause the module to return whatever is passed with the unknown parameter. The VALUE
keyword, if used, will be changed to the name of the parameter. This is useful for either sorting
the entries in a tracking category, or for provide more explicit information.

By default, the module makes no distinction between a defined-but-blank parameter and a non-
blank parameter. That is, both unlisted Vorlage:Para and Vorlage:Para are reported. To only track
non-blank parameters use Vorlage:Para.

Ausgabe: 04.02.2026

o 2 of o .
A g Seite 2 von 10
Letzte Anderung: 24.08.2022 scopiki

https://cuv.copiki.de/index.php?title=Vorlage:Lua&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

By default, the module ignores blank positional parameters. That is, an unlisted Vorlage:Para is
ignored. To /nc/ude blank positional parameters in the tracking use Vorlage:Para.

Lua patterns
This module supports Lua patterns (similar to regular expressions), which are useful when there

are many known parameters which use a systematic pattern. For example, template:infobox3cols
uses

| regexpl = header[%d][%d]*

| regexp2 = label[%d][%d]*

| regexp3 = datal[%d][%d]*[abc]?

| regexpd4 = class[%d][%d]*[abc]?
| regexp5 = rowclass[%d][%d]*

| regexp6 = rowstyle[%d][%d]*

| regexp7 = rowcellstyle[%d][%d]*

to match all parameters of the form headerNUM, labelNUM, dataNUM, dataNUMa, dataNUMb
dataNUMc, ..., rowcellstyleNUM, where NUM is a string of digits.

Example

{{Infobox
| above = {{{name|}}}

labell = Height
datal = {{{height]|}}}

label2 = Weight
data2 = {{{weight]|}}}

label3 = Website
data3 = {{{website]|}}}
}r<!--

end infobox, start tracking
-->{{#invoke:Check for unknown parameters|check
| unknown = {{main other|[[Category:Some tracking category| VALUE]1}}
| preview = unknown parameter " VALUE "
| name
| height | weight
| website
3

See also

® Vorlage:Clc (category page can have header Vorlage:Tl)

® Module:Check for deprecated parameters - similar module that checks for deprecated
parameters

® Module:Check for clobbered parameters - module that checks for conflicting parameters

® Module:TemplatePar - similar function (originally from dewiki)

Ausgabe: 04.02.2026

o 2 of o .
:] Seite 3 von 10
Letzte Anderung: 24.08.2022 '5@\coplkl

https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Para&action=edit&redlink=1
https://www.mediawiki.org/wiki/Extension:Scribunto/Lua_reference_manual#Patterns
https://cuv.copiki.de/index.php?title=Regular_expression&action=view
https://cuv.copiki.de/index.php?title=Vorlage:Infobox3cols&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Clc&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Tl&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Modul:Check_for_deprecated_parameters&action=view
https://cuv.copiki.de/index.php?title=Modul:Check_for_clobbered_parameters&action=view
https://cuv.copiki.de/index.php?title=Modul:TemplatePar&action=view
https://cuv.copiki.de/index.php?title=Vorlage:Parameters&action=edit&redlink=1

G/

C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

Template:Parameters and Module:Parameters - generates a list of parameter names for a
given template

Project:TemplateData based template parameter validation

Module:Parameter validation checks a lot more

User:Bamyers99/TemplateParametersTool - A tool for checking usage of template parameters

Ausgabe: 04.02.2026
Letzte Anderung: 24.08.2022

-- This module may be used to compare the arguments passed to the parent

-- with a list of arguments, returning a specified result if an argument is
-- not on the list

local p = {}

local function trim(s)

end

local function isnotempty(s)

end

local function clean(text)

end

function p. check(args, pargs)

return s:match('”%s*(.-)%s*$"')

return s and s:match('%S"')

-- Return text cleaned for display and truncated if too long.
-- Strip markers are replaced with dummy text representing the original vy
local pos, truncated
local function truncate(text)
if truncated then
return "'
end
if mw.ustring.len(text) > 25 then
truncated = true
text = mw.ustring.sub(text, 1, 25) ' '
end
return mw.text.nowiki(text)
end
local parts = {}
for before, tag, remainder in text:gmatch('([™\1271*)\127["\127]1*%- (%1+)3
pos = remainder
table.insert(parts, truncate(before) .. '<' .. tag .. '>..
end
table.insert(parts, truncate(text:sub(pos or 1)))
return table.concat(parts)

if type(args) ~= "table" or type(pargs) ~= "table" then
-- TODO: error handling
return

end

-- create the list of known args, regular expressions, and the return st
local knownargs = {}
local regexps = {}
for k, v in pairs(args) do
if type(k) == 'number' then
v = trim(v)
knownargs[v] =1
elseif k:find('"regexp[1-9][0-9]*$') then
table.insert(regexps, '~ .. v .. '$')
end
end

Schoplkl Seite 4 von 10

https://cuv.copiki.de/index.php?title=Vorlage:Parameters&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Projekt:TemplateData&action=view
https://cuv.copiki.de/index.php?title=Modul:Parameter_validation&action=view
https://cuv.copiki.de/index.php?title=Benutzer:Bamyers99/TemplateParametersTool&action=view

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

-- loop over the parent args, and make sure they are on the list
local ignoreblank = isnotempty(args['ignoreblank'])

local showblankpos = isnotempty(args['showblankpositional'])
local values = {}

for k, v in pairs(pargs) do

if type(k) == 'string' and knownargs[k] == nil then
local knownflag = false
for , regexp in ipairs(regexps) do

if mw.ustring.match(k, regexp) then
knownflag = true
break

end

end
if not knownflag and (not ignoreblank or isnotempty(v)

table.insert(values, clean(k))

end
elseif type(k) == 'number' and knownargs[tostring(k)] == nil the;
local knownflag = false
for , regexp in ipairs(regexps) do
if mw.ustring.match(tostring(k), regexp) then
knownflag = true
break
end
end
if not knownflag and (showblankpos or isnotempty(v)) tt
table.insert(values, k .. ' ="' .. clean(v))
end

end
end

-- add results to the output tables

local res = {}

if #values > 0 then
local unknown text = args['unknown'] or 'Found VALUE , '

if mw.getCurrentFrame():preprocess("{{REVISIONID}}") == "" thert
local preview text = args|['preview']

if isnotempty(preview text) then
preview text = require('Module:If preview'). wari

elseif preview == nil then
preview text = unknown_ text

end
unknown text = preview text

end

for , v in pairs(values) do
-- Fix odd bug for | = which gets stripped to the empty ¢
-- breaks category links
if v=="""then v =""end
-- avoid error with v = 'example%2' ("invalid capture ing
local r = unknown_text:gsub(' VALUE ', { VALUE_ = v})
table.insert(res, r)

end

end

return table.concat(res)
end

function p.check(frame)
local args = frame.args
local pargs = frame:getParent().args
return p. check(args, pargs)

end

Ausgabe: 04.02.2026 ot . |
A g Seite 5 von 10
Letzte Anderung: 24.08.2022 '5@\coplk’

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

return p

Ausgabe: 04.02.2026

o ’ . . .
. @
Letzte Anderung: 24.08.2022 r‘@\COplkl seite 6 von 10

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

Modul:Parameters

Vorlage:Lua

Implements Vorlage:TI

-- This module implements [[Template:Parameters]].
-- [SublimeLinter luacheck-globals:mw]

local DEFINITIONS = {
alt = {
code = '<!-- text alternative for image; see WP:ALT -->',
dlist = 'text alternative for image; see [[WP:ALT]]'},
coordinates = {

code = '<!-- use {{Coord}} -->',

dlist = 'using {{tl|Coord}}'},
coords = {

code = '<!-- use {{Coord}} -->',

dlist = 'using {{tl|Coord}}'},
native name = {

code = '<!-- name in local language; if more than one, separate
'using {{Plainlist}} use {{lang}}, and omit native name]
dlist = 'name in local language; if more than one, separate '

'using {{tl|Plainlist}}, use {{tl]|lang}}, and omit {{par:
native name lang = {
code = '<!-- language two- or three-letter ISO code -->',
dlist = 'language two- or three-letter ISO code'},
start date = {
code = '<!-- {{Start date]|YYYY|MM|DD|df=y}} -->',
dlist = 'use {{tlx|Start date|YYYY|MM|DD|df=y}}'},
end date = {
code = '<!-- {{End date|YYYY|MM|DD|df=y}} -->',
dlist = 'use {{tlx|Start date|YYYY|MM|DD|df=y}}'},
url = {
code = '<!-- use {{URL|example.com}} -->',
dlist = 'using {{tl|URL}}'},
website = {
code = '<!-- use {{URL|example.com}} -->',
dlist = 'using {{tls|URL|example.com}}'},}

local p = {}
local removeDuplicates = require('Module:TableTools').removeDuplicates
local yesno = require('Module:Yesno')

local function makeInvokeFunction(funcName)
return function(frame)
local getArgs = require('Module:Arguments').getArgs
return p[funcName] (getArgs(frame, {removeBlanks = false}))
end
end

local function extractParams(page)
local source = mw.title.new(page, 'Template'):getContent()

local parameters = {}

for parameter in string.gmatch(source, '{{{(.-)%f[}|<>]"') do
table.insert(parameters, parameter)

end

return removeDuplicates(parameters)

Ausgabe: 04.02.2026

.y o e |
:] Seite 7 von 10
Letzte Anderung: 24.08.2022 '5@\coplk’

https://cuv.copiki.de/index.php?title=Vorlage:Lua&action=edit&redlink=1
https://cuv.copiki.de/index.php?title=Vorlage:Tl&action=edit&redlink=1

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

end

local function map(tbl, transform)
local returnTable = {}
for k, v in pairs(tbl) do
returnTable[k] = transform(v)
end
return returnTable
end

local function strMap(tbl, transform)
local returnTable = map(tbl, transform)
return table.concat(returnTable)

end

function p. check(args)
local title = args.base or mw.title.getCurrentTitle().fullText
return string.format(
"{{#invoke:Check for unknown parameters|check|unknown=" ..
'‘[[Category:Pages using %s with unknown parameters]]|%s}}', title
table.concat(extractParams(args.base), '['))
end

function p. code(args)
local definitions = yesno(args.definitions)
local pad = yesno(args.pad)

local parameters = extractParams(args.base)
-- Space-pad the parameters to align the equal signs vertically
if pad then
local lengthPerPara = map(parameters, function (parameter)
return string.len(parameter) end)

for i, parameter in pairs(parameters) do
parameters[i] = string.format(fs, parameter)
end
end

local title = args.base or mw.title.getCurrentTitle().baseText
return string.format([[<nowiki>{{%s
%s}t}t</nowiki>]], title, strMap(parameters,
function(s)
if definitions then
return string.format('| %s = %s\n', s,

else
return string.format('| %s = \n', s)
end
end))
end

function p. flatcode(args)
local parameters = extractParams(args.base)
local title = args.base or mw.title.getCurrentTitle().baseText
return string.format(' {{tlp|%s%s}}', title, strMap(parameters,
function(s)
return string.format(' |%s{{=}}<var>%s</var>', s, s)
end)

end

function p. compare(args)
local Set = require('Module:Set')

Ausgabe: 04.02.2026

.y o e |
:] Seite 8 von 10
Letzte Anderung: 24.08.2022 '5@\coplk’

-- Lua doesn't support printf's <*> to specify the width, apparer
local fs = string.format('%%-%ss', math.max(unpack(lengthPerPara

DEFINITIONS[s] and DEFINITIONS[s].code o

G/

C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

%S
Similar:

[)
S

%s1],

end

end

Ausgabe: 04.02.2026
Letzte Anderung: 24.08.2022

Disparate:

function p. demo(args)

function p. dlist(args)

local function normaliseParams(parameters)
local paramsNorm = {}
-- Prepare a key lookup metatable, which will hold the original
-- parameter names for each normalised parameter, e.g.
-- [test] = {TEST, Test}. paramIndex functions like a Python
-- defaultdict, where the default is a table.
local paramIndex = setmetatable({}, { index = function(t, k)
if not rawget(t, k) then
rawset(t, k, {})

end
return rawget(t, k)
end})
for , parameter in pairs(parameters) do
table.insert(paramsNorm,
string.lower(string.gsub(parameter, 'SA', '')))
table.insert(paramIndex|
string.lower(string.gsub(parameter, '%A', ''))],
end

paramsNorm = removeDuplicates(paramsNorm)
-- Overload key lookup in paramsNorm. While [[Module:Set]] will
-- operate on the table (which is to say, the normalised paramete
-- array), key access will be by way of the paramIndex metatable
setmetatable(paramsNorm, { index = paramIndex})
return paramsNorm

end

local baseParams = extractParams(args.base)

local otherParams = extractParams(args.other)

local baseNormParams = normaliseParams(Set.valueComplement (
otherParams, baseParams))

local otherNormParams = normaliseParams(otherParams)

return string.format([[Identical:

strMap(Set.valuelntersection(baseParams, otherParams),
function(v) return string.format('* %s\n', v) end),
strMap(Set.valuelntersection(baseNormParams, otherNormParams),
function(v) return string.format('* %s < %s [%s]\n',
table.concat(baseNormParams[v], '; '),
table.concat(otherNormParams[v], '; '),
V)
end),
strMap(Set.valueComplement(otherNormParams, baseNormParams),
function(v) return strMap(baseNormParams[v],
function(s) return string.format('* %s\n', s) end)
end))

local title = args.base and ('| template=' .. args.base) or ''
return string.format('{{Parameter names example%s|%s}}', title,
table.concat(extractParams(args.base), '|'))

local definitions = yesno(args.definitions, true)
local defFormat = '; %s: %s\n'
local nonDefFormat = '; %s: \n'

:choplkl Seite 9 von 10

@
C+V Pharma-Depot GmbH

Modul:Check for unknown parameters

if args. para then

defFormat = '; {{para|%s}}: %s\n'
nonDefFormat = '; {{para|%s}}: \n'
end
return strMap(extractParams(args.base),
function(s)

if definitions then

return string.format(defFormat, s,
DEFINITIONS[s] and DEFINITIONS[s].dlist

else
return string.format(nonDefFormat, s)

end

end)
end

function p. dlistpara(args)
args. para = true
return p. dlist(args)
end

function p. list(args)
return strMap(extractParams(args.base),
function(s) return string.format('* %s\n', s) end)

end

p.check = makeInvokeFunction(' check')

p.code = makeInvokeFunction(' code')
p.flatcode = makeInvokeFunction(' flatcode')
p.compare = makeInvokeFunction(' compare')
p.demo = makeInvokeFunction(' demo')

p.dlist = makeInvokeFunction(' dlist')
p.dlistpara = makeInvokeFunction(' dlistpara')
p.list = makeInvokeFunction(' list')

return p

Ausgabe: 04.02.2026

o o e .
A g Seite 10 von 10
Letzte Anderung: 24.08.2022 '5@\coplkl

	Modul:Check for unknown parameters
	Usage
	Basic usage
	Lua patterns

	Example
	See also

	Modul:Parameters

